Preview

Urology Herald

Advanced search

Ultrasound-guided renal cavity puncture simulators: comparative characterisation and validation

https://doi.org/10.21886/2308-6424-2024-12-3-27-35

Abstract

Introduction. Teaching the skill of renal cavity puncture remains a pressing issue for both resident trainees and practicing physicians. Because patient-based training is ethically questionable and can be unsafe in terms of complications, training models have been created to practice skills.

Objective. To compare two non-biological simulators for renal cavity puncture under ultrasound guidance: “UROSON”, GEOTAR, Russia and the kidney phantom “SafeToAct”, Estonia.

Materials & methods. The study involved 40 young doctors with no experience in kidney puncture. Group 1 (20 people) practised on the UROSON simulator (GEOTAR, Russia). Group 2 (20 people) trained on a kidney phantom (SafeToAct, Estonia). Both simulators were evaluated by doctors before and after practice, as well as in the long-term period for 3 and 6 months. The assessment was carried out using a Likert scale.

Results. The UROSON was rated higher (p < 0.05) according to the results of the comparison of the parameters (colour and consistency, visualisation of the cavity and calyx on ultrasound). Renal cavity visualisation of the UROSON simulator was rated as "good" throughout the study. Visualisation deteriorated by 6.9% after six months of use. Meanwhile, the SafeToAct kidney phantom showed a 64% deterioration in visualisation after one month of use. The SafeToAct kidney phantom was not evaluated later point because it became unusable. Both simulators had "tracks" after punctures. The UROSON had 30% and the SafeToAct kidney phantom 100% (p < 0.0001).

Conclusion. The UROSON simulator can be used for training, master classes and accreditation of specialists. This simulator can be used for a long time.

About the Authors

N. K. Gadjiev
Pirogov Clinic of Advanced Medical Technologies (SPSU Hospital) — St. Petersburg State University
Russian Federation

Nariman K. Gadzhiev — Dr.Sc.(Med)

St. Petersburg



A. A. Mishchenko
Pavlov First State Medical University of St. Petersburg
Russian Federation

Alexandra A. Mishchenko

St. Petersburg



D. S. Gorelov
Pavlov First State Medical University of St. Petersburg
Russian Federation

Dmitry S. Gorelov

St. Petersburg



V. P. Britov
St. Petersburg Institute of Technology (Technical University)
Russian Federation

Vladislav P. Britov — Dr.Sc. (Engineering), Full Prof.

St. Petersburg



R. R. Kharchilava
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Revaz R. Kharchilava — Cand.Sc.(Med)

Moscow



I. V. Semenyakin
JSC MEDSI Ent. Clinical Hospital No. 1
Russian Federation

Igor V. Semenyakin — Dr.Sc.(Med)

Moscow



S. B. Petrov
Pavlov First State Medical University of St. Petersburg
Russian Federation

Sergey B. Petrov — Dr.Sc.(Med); Full Prof.

St. Petersburg



References

1. Afonso N, Amponsah D, Yang J, Mendez J, Bridge P, Hays G, Baliga S, Crist K, Brennan S, Jackson M, Dulchavsky S. Adding new tools to the black bag--introduction of ultrasound into the physical diagnosis course. J Gen Intern Med. 2010;25(11):1248-1252. DOI: 10.1007/s11606-010-1451-5

2. Allen D, O'Brien T, Tiptaft R, Glass J. Defining the learning curve for percutaneous nephrolithotomy. J Endourol. 2005;19(3):279-282. DOI: 10.1089/end.2005.19.279

3. Alken P. Percutaneous nephrolithotomy - the puncture. BJU Int. 2022;129(1):17-24. DOI: 10.1111/bju.15564

4. Gadzhiev N.K., Obidnyak V.M., Gorelov D.S., Malkhasyan V.A., Akopyan G.N., Mazurenko D.A., Kharchilava R.R., Petrov S.B., Martov A.G. Complications after PCNL: diagnosis and management. Urologiia. 2020;(5):139-148. (In Russian). DOI: 10.18565/urology.2020.5.139-148

5. Vijayakumar M, Balaji S, Singh A, Ganpule A, Sabnis R, Desai M. A novel biological model for training in percutaneous renal access. Arab J Urol. 2019;17(4):292-297. DOI: 10.1080/2090598X.2019.1642600

6. Veys R, Verpoort P, Van Haute C, Wang ZT, Chi T, Tailly T. Thiel-embalmed cadavers as a novel training model for ultrasound-guided supine endoscopic combined intrarenal surgery. BJU Int. 2020;125(4):579-585. DOI: 10.1111/bju.14954

7. Lazarus J, Asselin M, Kaestner L. Optically Tracked Needle for Ultrasound-Guided Percutaneous Nephrolithotomy Puncture: A Preliminary Report. J Endourol. 2021;35(12):1733-1737. DOI: 10.1089/end.2021.0136

8. Lojanapiwat B. The ideal puncture approach for PCNL: Fluoroscopy, ultrasound or endoscopy? Indian J Urol. 2013;29(3):208-213. DOI: 10.4103/0970-1591.117284

9. Shan CJ, Mazzucchi E, Payao F, Gomes AC, Baroni RH, Torricelli FC, Vicentini FC, Srougi M. The skin-to-calyx distance measured by renal ct scan and ultrasound. Int Braz J Urol. 2014;40(2):212-219. DOI: 10.1590/S1677-5538.IBJU.2014.02.11

10. Corrales M, Doizi S, Barghouthy Y, Kamkoum H, Somani B, Traxer O. Ultrasound or Fluoroscopy for Percutaneous Nephrolithotomy Access, Is There Really a Difference? A Review of Literature. J Endourol. 2021;35(3):241-248. DOI: 10.1089/end.2020.0672

11. Liu Q, Zhou L, Cai X, Jin T, Wang K. Fluoroscopy versus ultrasound for image guidance during percutaneous nephrolithotomy: a systematic review and meta-analysis. Urolithiasis. 2017;45(5):481-487. DOI: 10.1007/s00240-016-0934-1

12. Klein JT, Rassweiler J, Rassweiler-Seyfried MC. Validation of a Novel Cost Effective Easy to Produce and Durable In Vitro Model for Kidney-Puncture and Percutaneous Nephrolitholapaxy-Simulation. J Endourol. 2018;32(9):871-876. DOI: 10.1089/end.2017.0834

13. Gadzhiev N.K., Gorelov D.S., Mishchenko A.A., Britov V.P., Kharchilava R.R., Sharafutdinov E.F., Petrov S.B., Shkarupa D.D. Comparative evaluation of simulators for practising fluoroscopy-guided renal pelvic puncture. Urology Herald. 2023;11(3):23-34. (In Russian). DOI: 10.21886/2308-6424-2023-11-3-23-34

14. Talyshinskii A.E., Guliev B.G., Mishvelov A.E., Agagyulov M.U., Andriyanov A.A. Virtual reality simulator for developing spatial skills during retrograde intrarenal pyeloscopy. Urology Herald. 2023;11(1):100-107. (In Russian). DOI: 10.21886/2308-6424-2023-11-1-100-107

15. Richardson C, Bernard S, Dinh VA. A Cost-effective, Gelatin-Based Phantom Model for Learning Ultrasound-Guided Fine-Needle Aspiration Procedures of the Head and Neck. J Ultrasound Med. 2015;34(8):1479-1484. DOI: 10.7863/ultra.34.8.1479

16. Ristolainen A, Ross P, Gavšin J, Semjonov E, Kruusmaa M. Economically affordable anatomical kidney phantom with calyxes for puncture and drainage training in interventional urology and radiology. Acta Radiol Short Rep. 2014;3(5):2047981614534231. DOI: 10.1177/2047981614534231

17. Amini R, Kartchner JZ, Stolz LA, Biffar D, Hamilton AJ, Adhikari S. A novel and inexpensive ballistic gel phantom for ultrasound training. World J Emerg Med. 2015;6(3):225-228. DOI: 10.5847/wjem.j.1920-8642.2015.03.012


Review

For citations:


Gadjiev N.K., Mishchenko A.A., Gorelov D.S., Britov V.P., Kharchilava R.R., Semenyakin I.V., Petrov S.B. Ultrasound-guided renal cavity puncture simulators: comparative characterisation and validation. Urology Herald. 2024;12(3):27-35. (In Russ.) https://doi.org/10.21886/2308-6424-2024-12-3-27-35

Views: 520


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-6424 (Online)