Preview

Urology Herald

Advanced search

Burst wave lithotripsy – the new evolution stage of extracorporeal shock-wave lithotripsy

https://doi.org/10.21886/2308-6424-2021-9-3-127-134

Abstract

Urolithiasis is currently one of the most urgent problems in the world. Every eleventh worldwide inhabitant suffers from this disease. Previously, the only way to get rid of kidney stones and the urinary tract was open surgery, which was characterized by high trauma. Over the past decades, the development of technologies has made a significant contribution to the development of new methods of urolithiasis treatment. One of these methods is extracorporeal shock wave lithotripsy (ESWL). The first lithotripter Dornier HM-1 was produced in 1980. Subsequent models have got many changes, both in terms of ergonomics and power. The researchers noticed that the efficiency of stone crushing in the Dornier HM-1 lithotripter was higher than in newer models since the lower power provided the less intensive formation of cavitation bubbles that prevent the effective transit of subsequent waves through the stone. Nowadays, a new method of remote stone crushing is being developed based on low-amplitude high-frequency technology combined with ultrasonic propulsion, which is the main difference from traditional shock-wave lithotripters. The new technology of stone crushing is called «burst wave lithotripsy» (BWL). Currently, the data have been obtained that this method is more effective in terms of crushing quality and less traumatic.

About the Authors

N. K. Gadzhiev
St. Petersburg State University – Pirogov Clinic of Advanced Medical Technologies
Russian Federation

Nariman K. Gadzhiev – M.D., Dr.Sc.(Med.); Deputy Head for Medical (Urology)

199034, St. Petersburg, 7-9 Universitetskaya qy.


Competing Interests:

The authors declare no conflicts of interest.



D. S. Gorelov
Pavlov First St. Petersburg State Medical University
Russian Federation

Dmitry S. Gorelov – M.D.; Urologist, ESWL and Endovideosurgery Division, Research Center of Urology

197022, St. Petersburg, 6-8 Lev Tolstoy st.

tel.: +7 (921) 796-48-92


Competing Interests:

The authors declare no conflicts of interest.



A. O. Ivanov
Pavlov First St. Petersburg State Medical University
Russian Federation

Andrei O. Ivanov – M.D.; Head, ESWL and Endovideosurgery Division, Research Center of Urology

197022, St. Petersburg, 6-8 Lev Tolstoy st.


Competing Interests:

The authors declare no conflicts of interest.



I. V. Semenyakin
Evdokimov Moscow State University of Medicine and Dentistry
Russian Federation

Igor V. Semenyakin – M.D., Dr.Sc. (Med.); Assist., Dept. of Urology

127473, Moscow, 20 Delegatskaya st. bldg. 1


Competing Interests:

The authors declare no conflicts of interest.



I. E. Malikiev
Pavlov First St. Petersburg State Medical University
Russian Federation

Ibrahim E. Malikiev – M.D.; Dept. of Urology with the Clinical Urology Course

197022, St. Petersburg, 6-8 Lev Tolstoy st.


Competing Interests:

The authors declare no conflicts of interest.



V. M. Obidnyak
Pavlov First St. Petersburg State Medical University
Russian Federation

Vladimir M. Obidnyak – M.D.; Urologist, ESWL and Endovideosurgery Division, Research Center of Urology

197022, St. Petersburg, 6-8 Lev Tolstoy st.


Competing Interests:

The authors declare no conflicts of interest.



Ya. I. Kryuchkovenko
Pavlov First St. Petersburg State Medical University
Russian Federation

Yana I. Kryuchkovenko – Student

197022, St. Petersburg, 6-8 Lev Tolstoy st.


Competing Interests:

The authors declare no conflicts of interest.



S. B. Petrov
Pavlov First St. Petersburg State Medical University
Russian Federation

Sergey B. Petrov – M.D., Dr.Sc. (Med.); Full Prof.; Head, Research Center of Urology

197022, St. Petersburg, 6-8 Lev Tolstoy st.


Competing Interests:

The authors declare no conflicts of interest.



V. E. Grigoriev
A. M. Nikiforov All-Russian Center for Emergency and Radiation Medicine
Russian Federation

Vladislav E. Grigoriev – M.D.; Urologist, Urology Division

St. Petersburg


Competing Interests:

The authors declare no conflicts of interest.



References

1. Chen TT, Samson PC, Sorensen MD, Bailey MR. Burst wave lithotripsy and acoustic manipulation of stones. Curr Opin Urol. 2020;30(2):149-156. DOI: 10.1097/MOU.0000000000000727

2. Urologic Diseases in America. NIDDK. Available at: https:// www.niddk.nih.gov/about-niddk/strategic-plans-reports/ urologic-diseases-in-america Accessed December 11, 2020.

3. Elmansy HE, Lingeman JE. Recent advances in lithotripsy technology and treatment strategies: A systematic review update. Int J Surg. 2016;36(Pt D):676-680. DOI: 10.1016/j.ijsu.2016.11.097

4. Chaussy CG. The history of shockwave lithotripsy. In: The History of Technologic Advancements in Urology. Springer International Publishing; 2017.

5. Sapozhnikov OA, Maxwell AD, MacConaghy B, Bailey MR. A mechanistic analysis of stone fracture in lithotripsy. J Acoust Soc Am. 2007;121(2):1190-202. DOI: 10.1121/1.2404894

6. Large T, Krambeck AE. Emerging Technologies in Lithotripsy. Urol Clin North Am. 2019;46(2):215-223. DOI: 10.1016/j.ucl.2018.12.012

7. Türk C (Chair), Neisius A, Petřík A, Seitz, Skolarikos A (Vice-chair), Somani B, Thomas K, Gambaro G (Consultant nephrologist). Urolithiasis. In: EAU Guidelines. Edn. presented at the EAU Annual Congress Milan 2021. ISBN 978-94-92671-13-4. EAU Guidelines Office, Arnhem, the Netherlands, 2021. http://uroweb.org/guidelines/compilations-of-all-guidelines/

8. Maxwell AD, Cunitz BW, Kreider W, Sapozhnikov OA, Hsi RS, Harper JD, Bailey MR, Sorensen MD. Fragmentation of urinary calculi in vitro by burst wave lithotripsy. J Urol. 2015;193(1):338-44. DOI: 10.1016/j.juro.2014.08.009

9. Rassweiler J, Rieker P, Rassweiler-Seyfried MC. Extracorporeal shock-wave lithotripsy: is it still valid in the era of robotic endourology? Can it be more efficient? Curr Opin Urol. 2020;30(2):120-129. DOI: 10.1097/MOU.0000000000000732

10. Shah A, Owen NR, Lu W, Cunitz BW, Kaczkowski PJ, Harper JD, Bailey MR, Crum LA. Novel ultrasound method to reposition kidney stones. Urol Res. 2010;38(6):491-5. DOI: 10.1007/s00240-010-0319-9

11. Bailey MR, Wang YN, Kreider W, Dai JC, Cunitz BW, Harper JD, Chang H, Sorensen MD, Liu Z, Levy O, Dunmire B, Maxwell AD. Update on clinical trials of kidney stone repositioning and preclinical results of stone breaking with one system. Proc Meet Acoust. 2018;35(1):020004. DOI: 10.1121/2.0000949

12. Ikeda T, Yoshizawa S, Tosaki M, Allen JS, Takagi S, Ohta N, Kitamura T, Matsumoto Y. Cloud cavitation control for lithotripsy using high intensity focused ultrasound. Ultrasound Med Biol. 2006;32(9):1383-97. DOI: 10.1016/j.ultrasmedbio.2006.05.010

13. Chen TT, Wang C, Ferrandino MN, Scales CD, Yoshizumi TT, Preminger GM, Lipkin ME. Radiation Exposure during the Evaluation and Management of Nephrolithiasis. J Urol. 2015;194(4):878-85. DOI: 10.1016/j.juro.2015.04.118

14. Dai JC, Bailey MR, Sorensen MD, Harper JD. Innovations in Ultrasound Technology in the Management of Kidney Stones. Urol Clin North Am. 2019;46(2):273-285. DOI: 10.1016/j.ucl.2018.12.009

15. Zwaschka TA, Ahn JS, Cunitz BW, Bailey MR, Dunmire B, Sorensen MD, Harper JD, Maxwell AD. Combined Burst Wave Lithotripsy and Ultrasonic Propulsion for Improved Urinary Stone Fragmentation. J Endourol. 2018;32(4):344-349. DOI: 10.1089/end.2017.0675

16. Wang YN, Kreider W, Hunter C, Cunitz BW, Thiel J, Starr F, Dai JC, Nazari Y, Lee D, Williams JC, Bailey MR, Maxwell AD. An in vivo demonstration of efficacy and acute safety of burst wave lithotripsy using a porcine model. Proc Meet Acoust. 2018;35(1):020009. DOI: 10.1121/2.0000975

17. Ghanem MA, Maxwell AD, Wang YN, Cunitz BW, Khokhlova VA, Sapozhnikov OA, Bailey MR. Noninvasive acoustic manipulation of objects in a living body. Proc Natl Acad Sci U S A. 2020;117(29):16848-16855. DOI: 10.1073/pnas.2001779117

18. Ramesh S, Chen TT, Maxwell AD, Cunitz BW, Dunmire B, Thiel J, Williams JC, Gardner A, Liu Z, Metzler I, Harper JD, Sorensen MD, Bailey MR. In Vitro Evaluation of Urinary Stone Comminution with a Clinical Burst Wave Lithotripsy System. J Endourol. 2020;34(11):1167-1173. DOI: 10.1089/end.2019.0873

19. Marzo A, Seah SA, Drinkwater BW, Sahoo DR, Long B, Subramanian S. Holographic acoustic elements for manipulation of levitated objects. Nat Commun. 2015;6:8661. DOI: 10.1038/ncomms9661

20. Maeda K, Maxwell AD, Colonius T, Kreider W, Bailey MR. Energy shielding by cavitation bubble clouds in burst wave lithotripsy. J Acoust Soc Am. 2018;144(5):2952. DOI: 10.1121/1.5079641

21. Hunter C, Cunitz B, Dunmire B, Bailey M, Randad A, Kreider W, Maxwell AD, Sorensen MD, Williams JC. Impact of stone characteristics on cavitation in burst wave lithotripsy. Proc Meet Acoust. 2018;35(1):020005. DOI: 10.1121/2.0000950

22. Harper JD, Metzler I, Hall MK, Chen TT, Maxwell AD, Cunitz BW, Dunmire B, Thiel J, Williams JC, Bailey MR, Sorensen MD. First In-Human Burst Wave Lithotripsy for Kidney Stone Comminution: Initial Two Case Studies. J Endourol. 2021;35(4):506-511. DOI: 10.1089/end.2020.0725


Review

For citations:


Gadzhiev N.K., Gorelov D.S., Ivanov A.O., Semenyakin I.V., Malikiev I.E., Obidnyak V.M., Kryuchkovenko Ya.I., Petrov S.B., Grigoriev V.E. Burst wave lithotripsy – the new evolution stage of extracorporeal shock-wave lithotripsy. Urology Herald. 2021;9(3):127-134. (In Russ.) https://doi.org/10.21886/2308-6424-2021-9-3-127-134

Views: 3608


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2308-6424 (Online)