Preview

Вестник урологии

Расширенный поиск

МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ ПОЧЕЧНОЙ ПАРЕНХИМЫ ПРИ РЕФЛЮКС-НЕФРОПАТИИ

https://doi.org/10.21886/2308-6424-2013-0-2-43-51

Полный текст:

Аннотация

В статье представлены пути патогенеза повреждения почечной ткани в результате везико-уретерального рефлюкса. Автором показана роль макрофагов и тканевых моноци- тов в процессе воспалительного ремоделирования интерстициальной почечной ткани. Клеточные сигналы, воздействуя на интерстициальную ткань, активизируют пролифи- рацию фибробластов и приводят к увеличению интерстициального объема. Цитокины, такие как моноцитарный хемотаксический пептид-1, эпидермальный фактор роста, макрофагальный колониестимулирующий фактор, трансформирующий фактор роста β играют важную роль в процессах повреждения и перестройки почечной ткани. Инфекции мочевых путей приводят к выраженным медуллярным почечным повреждениям путем воздействия токсинов и индуктивных эндогенных цитокинов.

 

Об авторе

М. М. Батюшин
Кафедра внутренних болезней с основами физиотерапии №2, Проблемная научная лаборатория экспериментальной нефрологии ГБОУ ВПО РостГМУ Минздрава России, г.Ростов-на-Дону ФГАОУ ВПО «Южный федеральный университет», Научно-исследовательский институт биологии
Россия


Список литературы

1. Baily, R.R. The relationship of vesicoureteric reflux to urinary tract infection and chronic pyenonephritis-reflux nephropathy / R.R. Baily // Clin. Nephrol. – 1973. – №1. – P.132-136.

2. Vesicoureteric reflux and renal scarring / J.M. Smellie, D. Edwards, N. Hunter et al. // Kidney Int. – 1975. – Vol.8. – P.65-72.

3. Hodson, C.J. Chronic pyelonephritis and vesicoureteric reflux / C.J. Hodson, D. Edwards // Clin. Radiol. – 1960. – Vol.11. – P.219-231.

4. Stefanidis, C.J. Reflux nephropathy in children / C.J. Stefanidis // Clin. Nephrol. – 2001. – Vol.16. – P.117-119.

5. Olbing, H. Vesico-uretero-renal reflux and the kidney / H. Obling //Pediatric Nephrology. – 1987. – Vol.1. – P.638- 646.

6. Clinical course of 735 children and adolescents with primary vesicoureteral reflux / J.M. Silva et al. // Pediatr. Nephrol. –2006. – Vol.21. – P.981-988.

7. Gargollo, P.C. Therapy Insight: what nephrologists need to know about primary vesicoureteral reflux / P.C. Gargollo, D.A. Diamond // Nature clinical practice nephrology. – 2007. – Vol.3. – №10. – P.551-564.

8. Ureteral obstruction in neonatal mice elicits segment-specific tubular cell responses leading to nephron loss /F. Cachat, B. Lange-Sperandio, A.Y. Chang et al. // Kidney Int. – 2003. – Vol.63. – №2. – P.564-575.

9. Weiss, S. Pyelonephritis: its relation to vascular lesions and to arterial hypertension / S. Weiss, F. Parker // Medicine (Baltimore). – 1939. – Vol.18. – P.221-315.

10. Segerer, S. Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies / S. Segerer, P.J. Nelson, D. Schlondorff // J. Am. Soc. Nephrol. – 2000. – Vol.11. – P.152-176.

11. Renal Scarring and Osteopontin Gene C/T Polymorphism in Children With Primary Vesicoureteral Reflux / H. Erdogan, S. Mir, A. Berdeli, N. Aksu // Indian Pediatrics. –2012. – Vol.49. – P.311-313.

12. Cellular proliferation and macrophage influx precede interstitial fibrosis in cyclosporine nephrotoxicity / B.A. Young, E.A. Burdmann, R.J. Johnson et al. // Kidney Int. 1995. – V. 48. – P. 439- 448.

13. Osteopontin overproduction is associated with progression of glomerular fibrosis in a rat model of antiglomerular basement membrane glomerulonephritis / J. Merszei, J. Wu, L. Torres et al. // Am. J. Nephrol. – 2010. – Vol.32. – P.262- 271.

14. Blockade of osteopontin inhibits glomerular fibrosis in a model of antiglomerular basement membrane glomerulonephritis / C. Zhou, J. Wu, L. Torres et al. // Am. J. Nephrol. –2010. – Vol.32. – P.324-331.

15. An osteopontin (SPP1) polymorphism is associated with systemic lupus erythematosus / A.C. Forton, M.A. Petri, D. Goldman, K.E. Sullivan // Hum. Mutat. – 2002. – Vol.19. – P.459.

16. Osteopontin gene and clinical severity of multiple sclerosis / A.E. Hensiek, R. Roxburgh, M. Meranian et al. // J. Neurol. – 2003. – Vol.250. – P.943-950.

17. Eta-1/osteopontin genetic polymorphism and primary biliary cirrhosis / K. Kikuchi, A. Tanaka, H. Miyakawa et al. // Hepatol. Res. – 2003. – Vol.26. – P.87-90.

18. Genetic polymorphisms of osteopontin in association with multiple sclerosis in Japanese patients / M. Nino, S. Kikuchi, T. Fukazawa et al. // J. Neuroimmunol. – 2003. – Vol.136. – P.125- 129.

19. Genetic polymorphims in promoter region of osteopontin gene may be a marker reflecting hepatitis activity in chronic hepatitis C patients / S. Mochida, M. Hashimoto, A. Matsui et al. // Biochem. Biophys. Res. Commun. – 2004. – Vol.313. – P.1079-1085.

20. Macrophages, monocyte chemoattractant peptide-1 and TGF-b1 in experimental hydronephrosis / J.R. Diamond, D. Kees-Folts, G. Ding et al. //Am. J. Physiol. – 1994. – Vol.266. – P.926-933.

21. Monocyte chemotactic peptide-1 expression in acute and chronic human nephritides: A pathogenetic role in interstitial monocytes recruitment / G. Grandaliano, L. Gesualdo, E. Ranieri et al. // J. Am. Soc. Nephrol. – 1996. – Vol.7. – P.906-913.

22. Kennedy, W.A. Epidermal growth factor suppresses renal tubular apoptosis following ureteral obstruction / W.A. Kennedy, R. Buttyan, E. Garcia-Montes // Urology. – 1997. – Vol.49. – P.973-980.

23. Obstructive nephropathy in the neonatal rat is attenuated by epidermal growth factor / R.L. Chevalier, S. Goyal, J.T. Wolstenholme, B.A. Thornhill // Kidney Int. – 1998. – Vol.54. – P.38-47.

24. Glomerular expression of macrophage colony-stimulating factor in pa-tients with various forms of glomerulonephritis / M. Matsuda, K. Shikata, H. Makino et al.// Lab. Invest. – 1996. – Vol.75. – P.403-412.

25. Roll, U. Nitric oxide, enhanced by macrophage-colony stimulating factor, mediates renal damage in reflux nephropathy / U. Roll, H. Shima, P. Puri // Kidney. Int. – 2002. – Vol.62. – P.507-513.

26. Interleukin-1 alpha and interleukin-1 receptor antagonist in the urine of children with acute pyelonephritis and relation to renal scarring / K. Tullus, R. Escobar-Billing, O. Fituri et al. // Acta. Paediatr. – 1996. – Vol.85. – P.158- 162.

27. Cytokine gene expression during experimental Escherichia coli pyelonephritis in mice / A. Khalil, A. Brauner, M. Bakhiet et al // J. Urol. – 1997. – Vol.158. – P.1576–1580.

28. Interleukin-6 and interleukin-8 levels in the urine of children with renal scarring / D. Tramma, M. Hatzistylianou, G. Gerasimou, V. Lafazanis // Pediatr. Nephrol. – 2012. – Vol.27. – №9. – P.1525-1530.

29. Fidan, K. The association of cytokine gene polymorphism with reflux nephropathy / K. Fidan, S. Gonen, O. Soylemezoglu // J. Pediatr. Urol. – 2012. – Vol.17. – P.37-39.

30. Role of TGF-1 in renal parenchymal scarring following childhood urinary tract infection / S.A. Cotton, R.A. Gbadegesin, S. Williams et al. // Kidney Int. – 2002. – Vol.61. – P.61-67.

31. Significance of the tissue kallikrein promoter and transforming growth factor-b1 polymorphisms with renal progression in children with vesicoureteral reflux / G.J. Lee-Chen, K.P. Liu, Y.C. Lai et al. // Kidney Int. – 2004. – Vol.65. – P.1467-1472.

32. Urinary endothelin-1 excretion according to morpho-functional damage lateralization in reflux nephropathy / C. Olianti, A. Imperiale, M. Materassi et al. // Nephrol. Dial. Transplant. – 2004. – Vol.19. – P.1774-1778.

33. Benigni, A. Endothelin antagonists in renal disease / A. Benigni // Kidney Int. – 2000. – Vol.57. – P.1778-1794.

34. Renal endothelin ETA/ETB receptor imbalans differentiates salt-sensitive from salt-resistant spontaneous hypertension / L. Rothermund, S. Luckert, P. Kobmehl et al. // Hypertension. – 2002. – Vol.40. – P.67-73.

35. Intrinsic expression of Th2 cytokines in urothelium of congenital ureteropelvic junction obstruction / Y.Y. Chiou, C.C. Shieh, H.L. Cheng, M.J. Tang // Kidney Int. – 2005. – Vol.67. – P.638-646.

36. Gutierrez-Ramos, J.C. Eotaxin: From aneosinophilic chemokine to a major regulator of allergic reactions / J.C. Gutierrez-Ramos, C. Lloyd, J.A. Gonzalo // Immunol. Today. – 1999. – Vol.20. – P.500-504.

37. T helper cell type 2 cytokinemediated comitogenic responses and CCR3 expression during differentiation of hu-man mast cells in vitro / H. Ochi, W.M. Hirani, Q. Yuan et al. // J. Exp. Med. – 1999. – Vol.190. – P.267-280.

38. Lack of major involvement of human uroplakin genes in vesicoureteral reflux: Implications for disease heterogeneity / S. Jiang, J. Gitlin, F.F. Deng et al. // Kidney Int. – 2004. – Vol.66. – P.10-19.

39. Structural basis of urothelial permeability barrier function as revealed by cryo-EM studies of the 16 nm uroplakin particle / G. Min, G. Zhou, M. Schapira et al. //J. Cell Sci. – 2003. – Vol.116. – P.4087-4094.

40. Oostergetel, G.T. Structure of the major membrane protein complex from urinary bladder epithelial cells by cryoelectron crystallography / G.T. Oostergetel,W. Keegstra, A. Brisson // J. Mol. Biol. – 2001. – Vol.314. – P.245-252.

41. Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux / P. Hu, F.M. Deng, F.X. Liang et al. // J. Cell Biol. – 2000. – Vol.151. – P.961-972.

42. Role of membrane proteins in permeability barrier function: Uroplakin ablation elevates urothelial permeability / P. Hu, S. Meyers, F.X. Liang et al. // Am. J. Renal Physiol. – 2002. – Vol.283. – P.1200-1207.

43. Pivotal Role of Toll-Like Receptors 2 and 4, Its Adaptor Molecule MyD88, and Inflammasome Complex in Experimental Tubule-Interstitial Nephritis / M. Correa-Costa, T.T. Braga, P. Semedo et al. // PLoS One. – 2011. – Vol.6. – №12. – P.290-294.

44. Anders, H.J. Signaling danger: toll-like receptors and their potential roles in kidney disease / H.J. Anders, B. Banas, D. Schlondorff // J. Am. Soc. Nephrol. – 2004. – Vol.15. – P.854-867.

45. The inflammasome: a caspase-1- activation platform that regulates immune responses and disease pathogenesis / L. Franchi, T. Eigenbrod, R. MunozPlanillo, G. Nunez // Nat. Immunol. – 2009. – Vol.10. – P.241-247.

46. Activation of toll-like receptor-9 induces progression of renal disease in MRL-Fas(lpr) mice / H.J. Anders, V. Vielhauer, V. Eis et al. // FASEB J. – 2004. – Vol.18. – P.534-536.

47. The role of Toll-like receptor 2 in inflammation and fibrosis during progressive renal injury / J.C. Leemans, L.M. Butter, W.P. Pulskens et al. // PLoS One. – 2009. – Vol.4. – P.570-574.

48. TLR4 promotes fibrosis but attenuates tubular damage in progressive renal injury / W.P. Pulskens, E. Rampanelli, G.J. Teske et al. // J. Am. Soc. Nephrol. – 2010. – Vol.21. – P.1299- 1308.

49. Loss of TIMP3 Enhances Interstitial Nephritis and Fibrosis / Z. Kassiri, G.Y. Oudit, V. Kandalam et al. // JASN. – 2009.– Vol.20. – №6. – P.1223-1235.


Для цитирования:


Батюшин М.М. МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ ПОЧЕЧНОЙ ПАРЕНХИМЫ ПРИ РЕФЛЮКС-НЕФРОПАТИИ. Вестник урологии. 2013;(2):43-51. https://doi.org/10.21886/2308-6424-2013-0-2-43-51

For citation:


Batyushin M.M. MECHANISMS OF RENAL SCARING FROM REFLUX-NEPHROPATHY. Urology Herald. 2013;(2):43-51. (In Russ.) https://doi.org/10.21886/2308-6424-2013-0-2-43-51

Просмотров: 512


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2308-6424 (Online)