Preview

Вестник урологии

Расширенный поиск

Экспертные системы в оценке данных урофлоуграмм

https://doi.org/10.21886/2308-6424-2018-6-3-12-16

Полный текст:

Аннотация

Актуальность. В практике врача-уролога принято судить о типе мочеиспускания по двум параметрам: чаще всего это эффективный объём мочевого пузыря (V) и максимальная объёмная скорость мочеиспускания (Qmax). Поскольку экспертная оценка цифровых характеристик потока мочи часто неоднозначна, они скептически воспринимаются частью врачей и нередко остаются без должного внимания. В настоящее время всё больше проявляется стремление медицины к объективизации путём количественного выражения клинических показателей. Основной технологией, используемой для решения задач обработки и анализа данных, а также их классификации и прогнозирования, являются искусственные нейронные сети. Целью работы являлась разработка экспертной системы распознавания данных урофлометрии на основе нейросетевого классификатора.

Материалы и методы. Обучение искусственной трёхслойной нейронной сети прямого распространения происходило по данным 210 урофлоуграмм и многомерного вектора, характеризующегося 9 входными параметрами.

Результаты. Тестирование системы проводилось на 40 примерах – данных урофлоуграмм пациентов, не участвовавших в обучении нейронной сети. При этом нейронная сеть определила все предложенные примеры правильно.

Выводы. Предложен нейросетевой метод распознавания данных урофлометрии различных заболеваний нижних мочевых путей. Сформировано пространство информативных признаков, влияющих на оценку данных урофлоуметрии. Разработана экспертная система, классифицирующая заболевания (3 вида отклонений от нормы) нижних мочевых путей (НМП) со степенью уверенности в 95%.

Об авторах

А. В. Ершов
ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» МЗ РФ
Россия

Ершов Артём Владимирович ‒ ассистент кафедры урологии, андрологии и сексологии



Ф. П. Капсаргин
ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» МЗ РФ
Россия

Капсаргин Федор Петрович ‒ д.м.н, профессор, заведующий кафедрой урологии, андрологии и сексологии.

Тел.: +7 (908) 212-48-20



А. Г. Бережной
ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» МЗ РФ
Россия

Бережной Александр Григорьевич ‒ кандидат медицинских наук, доцент кафедры урологии, андрологии и сексологии



М. П. Мылтыгашев
ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» МЗ РФ
Россия

Мылтыгашев Мирген Прокопьевич ‒ кандидат медицинских наук, ассистент кафедры урологии, андрологии и сексологии



Список литературы

1. Каллан Р. Основные концепции нейронных сетей. Пер. с англ. М.: Издательский дом «Вильямc”; 2001:128-140. (In Russ.). ISBN: 5-8459-0210-Х

2. Вишневский Е.Л., Пушкарь Д.Ю., Лоран О.Б., Данилов В.В., Вишневский А.Е. Урофлоуметрия. М.: Печатный город; 2004. ISBN: 5-98467-001-1

3. Круглов В.В., Борисов В.В. Искусственные нейронные сети. Теория и практика. М.: Горячая линия-Телеком; 2002. ISBN 5-93517-031-0

4. Россиев Д.А. Самообучающиеся нейросетевые экспертные системы в медицине: теория, методология, инструментарий, внедрение: Дис. … док. мед. наук. Красноярск; 1997. Доступно по: http://earthpapers.net/samoobuchayuschiesya-neyrosetevye-ekspertnyesistemy-v-meditsine-teoriya-metodologiya-instrumentariyvnedrenie Ссылка активна на 28.09.2018.

5. Van de Beek C, Stoevelaar HJ, McDonnell J, Nijs HG, Casparie AF, Janknegt RA. Interpreta on of urofl owmetry curves by urologists. J Urol. 1997;157(1):164-8. PMID: 8976242


Для цитирования:


Ершов А.В., Капсаргин Ф.П., Бережной А.Г., Мылтыгашев М.П. Экспертные системы в оценке данных урофлоуграмм. Вестник урологии. 2018;6(3):12-16. https://doi.org/10.21886/2308-6424-2018-6-3-12-16

For citation:


Ershov A.V., Kapsargin F.P., Berezhnoy A.G., Miltigashev M.P. Expert systems in uroflowmetry data evaluation. Urology Herald. 2018;6(3):12-16. (In Russ.) https://doi.org/10.21886/2308-6424-2018-6-3-12-16

Просмотров: 101


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2308-6424 (Online)